Can We Predict Primary Creep and Least Principal Stress Shmin at Depth Either from Specific Surface Area or Weak Phase of Gas Shales?

Author:

Mandal Partha Pratim1,Sarout Joel2,Rezaee Reza1,Hossain Mofazzal1

Affiliation:

1. Curtin University, Perth, WA, Australia

2. CSIRO Energy, Perth, WA, Australia

Abstract

AbstractRecently short-term laboratory primary creep i.e., time-dependent deformation under triaxial in situ stress condition of ultra-low permeable gas shales have been utilized to work out geomechanical impacts of field development cycle such as modification of in situ stress state, prediction of production induced deformation, and understanding of fracture closure mechanism. However, obtaining creep data from the laboratory method is tedious, time-consuming, and costly. A simple power law model as a function of time involving instantaneous elastic compliance of the studied material B, and time dependent component n is used to describe creep and stress relaxation owing to the superposition principle of linear viscoelastic materials. Gas shales usually have a large specific surface area (SSA) because of the dominance of clay minerals (Illite, Smectite, Kaolinite, and Chlorite) and/or total organic carbon (TOC). Low-pressure nitrogen gas adsorption is a quick and cost-effective method to derive specific surface area value SN2 on powdered gas shale samples. From the observed strong empirical correlation between creep parameters and SN2value as well as with weak phase fraction ClayTocPHI (combination of clay, porosity, and TOC), a novel indirect approach is proposed to predict primary creep constitutive parameters either from the specific surface area (SSA) value SN2 or weak phase fraction ClayTocPHI of multiple gas shales at deeper subsurface formations (Figure 1). These gas shales cover a broad range of mineralogy, maturity, porosity, and depositional history. Through a case study, empirically derived creep parameters from SN2 are utilized to predict the least principal stress Shmin magnitude at depth of a six lithological layered gas shale formation with a viscoelastic stress relaxation approach. Direct field measurement validated the layered variation of the predicted Shmin magnitude.

Publisher

IPTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3