Herbage accumulation, plant-part composition and nutritive value on grazed signal grass (Brachiaria decumbens) pastures in response to stubble height and rest period based on canopy light interception

Author:

Pedreira Carlos G. S.,Braga Gustavo J.,Portela Jorge N.

Abstract

Signal grass (Brachiaria decumbens cv. Basilisk, syn. Urochloa decumbens Stapf R.D. Webster) has been widely grown in the Brazilian tropics over the last 40 years, but management recommendations have been largely empirical and not based on canopy targets. This study was designed to characterise and explain the impact of canopy-based grazing strategies on herbage accumulation, plant-part composition, and nutritive value of signal grass. Treatments were factorial combinations of two stubble heights, 5 cm (SH5) and 10 cm (SH10), and two grazing frequencies, grazing initiated when 95% (LI95) and 100% (LI100) of incoming light was intercepted by the canopy. Rest periods were imposed during summer and autumn of both experimental years. Leaf blade accumulation was greater for LI100 than LI95 (9.5 v. 8.8 t/ha) associated with increased stem accumulation (4.6 v. 3.5 t/ha for LI100 v. LI95). The SH10 pastures produced more stem than SH5 pastures (4.4 v. 3.6 t/ha), with no difference in leaf blade accumulation. In general, SH10 pastures had more residual leaf blade mass post-graze, whereas SH5 pastures combined with higher grazing frequency (SH5-LI95) became more prostrate over time, increasing leaf blade proportion in post-graze forage. Over time, stubble height had more influence than grazing frequency on leaf blade proportion at pre-graze, and SH5 pastures had leafier canopies than SH10 pastures. Digestibility was less under LI100, especially when associated with SH5 stubble (SH5-LI100), regardless of season of the year. To provide optimal leaf blade yield and overall forage digestibility, particularly during warm, rainy seasons, defoliation of signal grass should include pre-graze height varying from 18 to 30 cm (95–100% of light interception) and mean stubble height close to 10 cm.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3