Can silvopasture with arboreal legumes increase root mass at deeper soil layers and improve soil aggregation?

Author:

de Lima Coêlho Diego1,Dubeux José Carlos Batista2ORCID,dos Santos Mércia Virginia Ferreira1,de Mello Alexandre Carneiro Leão1,da Cunha Márcio Vieira1,de Freitas Erinaldo Viana3,de Almeida Brivaldo Gomes4,de Oliveira Apolinário Valéria Xavier5,Ferraz André Pereira Freire6ORCID,Simili Flávia Fernanda7ORCID

Affiliation:

1. Department of Animal Science Federal Rural University of Pernambuco Recife Pernambuco Brazil

2. North Florida Research and Education Center University of Florida Marianna Florida USA

3. Agronomic Institute of Pernambuco Recife Pernambuco Brazil

4. Department of Agronomy Federal Rural University of Pernambuco Recife Pernambuco Brazil

5. Department of Animal Science State University of Maranhão São Luís Maranhão Brazil

6. Institute of Agricultural and Technological Sciences Federal University of Rondonópolis Rondonópolis Mato Grosso Brazil

7. Instituto de Zootecnia Ribeirao Preto São Paulo Brazil

Abstract

AbstractSilvopastoral system (SPS) is a multifunctional agroforestry practice. This study evaluate soil properties and root biomass under SPS in Pernambuco, Brazil. The experiment was established in 2011. The treatments were (1) monoculture signalgrass (MS) [Urochloa decumbens (Stapf.) R. D. Webster], (2) intercropped pasture of signalgrass with legume Gliricidia (SG) [Gliricidia sepium (Jacq.) Steud.], and (3) intercropped pasture of signalgrass with legume sabiá (SS) (Mimosa caesalpiniifolia Benth). Treatments were allocated in randomized complete block design with three replications. Samples were collected at 0‐ to 10‐, 10‐ to 20‐, 20‐ to 40‐, 40‐ to 60‐, 60‐ to 80‐, 80‐ to 100‐, and 100‐ to 120‐cm soil depths. Soil samples were also taken from the native forest (NF) considered as a reference at the same Experimental Station. Legume SPS (SG and SS) presented greater root biomass per unit area compared to MS at 60‐ to 80‐cm depth (p < 0.05); however, MS had greater root biomass per hectare at the top layers. The average values of the weighted mean diameter of soil aggregates were 3.20, 3.19, 3.07, and 3.27 mm in MS, SG, SS, and NF, respectively, at 0‐ to 120‐cm depths. The SPS increased soil cation exchange capacity in deeper layers, indicating greater biological activity at greater depth. Grasslands and SPS store 235 Mg C ha−1 with 71% of that found in deeper layers (20–120 cm). SPS with signalgrass intercropped with arboreal legumes has potential to improve deep soil C storage and resilience of livestock systems in tropical regions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3