Proteomic analysis of axillary buds of sugarcane at different cutting stages: evidence for alterations in axillary bud gene expression

Author:

Maranho Rone C.ORCID,Benez Mariana M.,Maranho Gustavo B.,Neiverth Adeline,Santos Marise F.,Carvalho Ana Lúcia O.,Gonela Adriana,Mangolin Claudete A.,Machado Maria de Fátima P. S.ORCID

Abstract

Productivity of sugarcane (Saccharum spp.) crops varies at each cutting stage, reaching critical rates close to the fifth cut (fourth ratoon). Knowledge of proteins involved in the regrowth of sugarcane within the cutting process is important for the development of cultivars with greater longevity. The present study presents new information that the proteome of axillary buds is changed in successive cuts in sugarcane culture. Proteins were identified by UPLC-ESI-Q-TOF (ultra-high-performance liquid chromatography coupled with electrospray ionisation–quadrupole–time-of-flight) mass spectrometry and the Mascot tool. A reduction in the number of proteins was evident in the axillary buds of the fifth cut, as well as a reduction in the number of proteins exclusively detected in the axillary buds with the first cut, an indicator of reduction in the expression of genes that may be essential for the stability of culture development. The reduction in agricultural productivity, sprouting and tillering at advanced stages of the sugarcane crop is accompanied by alterations in axillary-bud gene expression, where <50% of the proteins (47.65%) were detected in both the first (plant cane) and in the fifth (fourth ratoon) cutting stage, whereas >50% (52.35%) were expressed in either the axillary buds of the plant cane or the axillary buds of the fourth ratoon. All MS data are available via jPOST and ProteomeXchange with identifiers JPST000331 and PXD007957, respectively.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3