Physiological consequences of heat stress in pigs

Author:

Ross J. W.,Hale B. J.,Gabler N. K.,Rhoads R. P.,Keating A. F.,Baumgard L. H.

Abstract

Heat stress negatively influences the global pork industry and undermines genetic, nutritional, management and pharmaceutical advances in management, feed and reproductive efficiency. Specifically, heat stress-induced economic losses result from poor sow performance, reduced and inconsistent growth, decreased carcass quality, mortality, morbidity, and processing issues caused by less rigid adipose tissue (also known as flimsy fat). When environmental conditions exceed the pig’s thermal neutral zone, nutrients are diverted from product synthesis (meat, fetus, milk) to body temperature maintenance thereby compromising efficiency. Unfortunately, genetic selection for both increased litter size and leaner phenotypes decreases pigs’ tolerance to heat, as enhanced fetal development and protein accretion results in increased basal heat production. Additionally, research has demonstrated that in utero heat stress negatively and permanently alters post-natal body temperature and body composition and both variables represent an underappreciated consequence of heat stress. Advances in management (i.e. cooling systems) have partially alleviated the negative impacts of heat stress, but productivity continues to decline during the warm summer months. The detrimental effects of heat stress on animal welfare and production will likely become more of an issue in regions most affected by continued predictions for climate change, with some models forecasting extreme summer conditions in key animal-producing areas of the globe. Therefore, heat stress is likely one of the primary factors limiting profitable animal protein production and will certainly continue to compromise food security (especially in emerging countries) and regionalise pork production in developed countries. Thus, there is an urgent need to have a better understanding of how heat stress reduces animal productivity. Defining the biology of how heat stress jeopardises animal performance is critical in developing approaches (genetic, managerial, nutritional and pharmaceutical) to ameliorate current production issues and improve animal wellbeing and performance.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3