African Local Pig Genetic Resources in the Context of Climate Change Adaptation

Author:

Pius Lenox12,Huang Shuntao1,Wanjala George345ORCID,Bagi Zoltán3ORCID,Kusza Szilvia3ORCID

Affiliation:

1. College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

2. Animal Breeding and Genetics Resource Section, Tanzania Livestock Research Institute (TALIRI), Dodoma 41207, Tanzania

3. Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary

4. Doctoral School of Animal Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary

5. Institute of Animal Sciences and Wildlife Management, University of Szeged, Andrássy út 15, 6800 Hódmezővásárhely, Hungary

Abstract

Africa is home to a wide diversity of locally adapted pig breeds whose genetic architecture offers important insights into livestock adaptation to climate change. However, the majority of these inherent traits have not been fully highlighted. This review presents an overview of the current state of African pig genetic resources, providing highlights on their population and production statistics, production system, population diversity indices, and genomic evidence underlying their evolutionary potential. The study results reveal an incomplete characterization of local pig genotypes across the continent. The characterized population, however, demonstrates moderate to high levels of genetic diversity, enough to support breeding and conservation programs. Owing to low genetic differentiation and limited evidence of distinct population structures, it appears that most local pig populations are strains within larger breeds. Genomic evidence has shown a higher number of selection signatures associated with various economically important traits, thus making them potential candidates for climate change adaptation. The reportedly early evidence of hybridization with wild suid groups further suggests untapped insights into disease resistance and resilience traits that need to be illuminated using higher-density markers. Nevertheless, gene introgression from commercial breeds is prevalent across Africa; thus, efforts to realize and utilize these traits must increase before they are permanently depleted.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3