Genetic parameters for methane emissions in Australian sheep measured in portable accumulation chambers in grazing and controlled environments

Author:

Wahinya P. K.ORCID,Oddy V. H.,Dominik S.ORCID,Brown D. J.ORCID,Macleay C. A.,Paganoni B.ORCID,Thompson A. N.,Donaldson A. J.,Austin K.,Cameron M.,van der Werf J. H. J.ORCID

Abstract

Context Genotype by environment interaction or sire re-ranking between measurements of methane emission in different environments or from using different measurement protocols can affect the efficiency of selection strategies to abate methane emission. Aim This study tested the hypothesis that measurements of methane emission from grazing sheep under field conditions, where the feed intake is unknown, are genetically correlated to measurements in a controlled environment where feed intake is known. Methods Data on emission of methane and carbon dioxide and uptake of oxygen were measured using portable accumulation chambers from 499 animals in a controlled environment in New South Wales and 1382 animals in a grazing environment in Western Australia were analysed. Genetic linkage between both environments was provided by 140 sires with progeny in both environments. Multi-variate animal models were used to estimate genetic parameters for the three gas traits corrected for liveweight. Genetic groups were fitted in the models to account for breed differences. Genetic correlations between the field and controlled environments for the three traits were estimated using bivariate models. Key results Animals in the controlled environment had higher methane emission compared to the animals in the field environment (37.0 ± s.d 9.3 and 35.3 ± s.d 9.4 for two protocols vs 12.9 ± s.d 5.1 and 14.6 ± s.d 4.8 mL/min for lambs and ewes (±s.d); P < 0.05) but carbon dioxide emission and oxygen uptake did not significantly differ. The heritability estimates for methane emission, carbon dioxide emission and oxygen uptake were 0.15, 0.06 and 0.11 for the controlled environment and 0.17, 0.27 and 0.35 for the field environment. The repeatability for the traits in the controlled environment ranged from 0.51 to 0.59 and from 0.24 to 0.38 in the field environment. Genetic correlations were high (0.85–0.99) but with high standard errors. Conclusion Methane emission phenotypes measured using portable accumulation chambers in grazing sheep can be used in genetic evaluation to estimate breeding values for genetic improvement of emission related traits. The combined measurement protocol-environment did not lead to re-ranking of sires. Implication These results suggest that both phenotypes could be used in selection for reduced methane emission in grazing sheep. However, this needs to be consolidated using a larger number of animals and sires with larger progeny groups in different environments.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3