Lucerne, phalaris, and wallaby grass in short-term pasture phases in two eastern Australian wheatbelt environments. 1. Importance of initial perennial density on their persistence and recruitment, and on the presence of weeds

Author:

Dear B. S.,Virgona J. M.,Sandral G. A.,Swan A. D.,Orchard B. A.

Abstract

The influence of initial plant density on the changes in the populations of 3 perennial pasture species, lucerne (Medicago sativa L.), wallaby grass (Austrodanthonia richardsonii (Cashm.) H.P. Linder), and phalaris (Phalaris aquatica L.), over a 3-year pasture phase was examined in the wheatbelt of southern New South Wales. The perennials were sown at 5 rates in combination with subterranean clover (Trifolium subterraneum L.) at 2 locations, Kamarah [430 mm average annual rainfall (a.a.r.)] and Junee (550 mm a.a.r). The range in initial plant populations for lucerne, phalaris, and wallaby grass was 4–74, 8–94, and 2–20 plants/m2, respectively, at Kamarah and 11–120, 9–149, and 6–48 plants/m2 at Junee. When sown at higher densities, the density of lucerne and phalaris declined curvilinearly over the 3 years at both sites. At the 3 lower densities, phalaris populations remained constant at both sites. Lucerne, in contrast, declined over all densities at both sites except at the lowest density at the wetter site (Junee). The rate of decline in lucerne was negatively related (R2 = 0.75) to initial density at Junee, but not at Kamarah. The density of the native grass, wallaby grass, increased with time at both sites through seedling recruitment. The invasion of experimental plots by the summer weed Eragrostis cilianensis (All.) Vign. ex Janchen (stinkgrass) was restricted by lucerne and phalaris, with a negative curvilinear relationship between perennial density and E. cilianensis seedlings in both environments (R2 = 0.65–0.70). In contrast, wallaby grass was ineffective at suppressing E. cilianensis. By the third year, phalaris had significantly higher herbage yields in spring than lucerne and wallaby grass at both sites and phalaris yield was independent of density. Lucerne yields at this time increased with density only at the wetter site (R2 = 0.64), but wallaby grass yields responded to increasing density at both sites (R2 = 0.27–0.59). The experiment demonstrated that establishing higher initial perennial populations of lucerne and phalaris, which did not recruit during the experiment, will result in the maintenance of higher populations over the life of a 3–4 year pasture phase despite proportionally higher rates of plant loss. The size of the initial population was less critical for wallaby grass, which was able to increase in density through recruitment. High initial populations are likely to be an advantage for suppressing weeds in swards of perennial species with limited ability to increase their basal area, such as lucerne and wallaby grass, but will be less beneficial for species such as phalaris, which can compensate by greatly increasing its basal area at lower densities.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3