Performance of sheep systems grazing perennial pastures. 1. Pasture persistence and enterprise productivity

Author:

Robertson Susan M.,Broster John C.,Friend Michael A.

Abstract

Sheep production can be optimised by matching the pasture supply curve to feed demand. This study evaluated the production from four management systems with Merino ewes during 2006–2010 in southern New South Wales by using different combinations of lambing time (winter, split, spring), ram breed (Merino, terminal), and percentage of summer-active pasture species (40% or 20% lucerne, Medicago sativa). All systems were stocked at a similar midwinter rate (dry-sheep equivalents per hectare of 8, 10.2, 13, 11.2 and 11.2 in the successive seasons 2006–2010), and there were three replicates of each system. Groundcover and pasture persistence were not adversely impacted by sheep system because sheep were removed at predetermined biomass triggers. Wool production per hectare was up to 178% or 12 kg/ha higher (P < 0.001) in systems where a later month of lambing allowed an increase in number of ewes per hectare at the same midwinter stocking rate. The quantity of lamb sold was not consistently higher in any one system, or in systems producing both crossbred and Merino lambs vs only Merino lambs, owing to variation in the weight and age of lambs at sale, but was increased (P < 0.001) by 175 kg/ha with use of 40% compared with 20% lucerne in a high-rainfall year. The risk of requiring high levels of supplementary feeding was higher in systems with later lambing because of below-average rainfall between 2006 and 2009. Large increases in production can be achieved from the same pasture base through choice of management system with different lambing time, stocking rate or ram breed, but flexibility is needed to optimise production in varying seasonal conditions.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3