A quantitative revision of the waterlogging tolerance of perennial forage grasses

Author:

Di Bella Carla E.ORCID,Grimoldi Agustín A.ORCID,Striker Gustavo G.ORCID

Abstract

Waterlogging tolerance of eight C4 and seven C3 perennial forage grasses was reviewed. The median waterlogging duration was similar between species’ type, ranging between 18 and 21 days. Inter- and intra-species variability was found in shoot and root biomass in response to waterlogging. Urochloa brizantha (C4), Brachiaria hybrid (C4) and Dactylis glomerata (C3) were the less tolerant species to waterlogging (shoot biomass median of 45%, 53% and 80% of controls), while U. humidicola (C4), Paspalum dilatatum (C4), Festuca arundinacea (C3) and Lolium perenne (C3) were the most tolerant (shoot biomass median of 97%, 101%, 87% and 94% of controls). A similar ranking of responses was found among species for root biomass. The formation of aerenchyma/root porosity (a key trait for waterlogging tolerance) was evaluated mainly in U. humidicola and P. dilatatum (C4 waterlogging-tolerant species), which showed considerable constitutive porosity (13% and 32%) and final values of 30% and 41% under waterlogging. Net photosynthesis and stomatal conductance as typical leaf physiological responses matched species’ waterlogging tolerance, with the impact of hypoxia higher in C3 than in C4 species. Gaps in knowledge about waterlogging tolerance in forage grasses are: (i) additional studies on C3 perennial grasses for temperate pasture areas prone to waterlogging, (ii) identification of traits and responses aiding plant recovery after waterlogging (and also during the stress), (iii) reassessment of waterlogging tolerance considering plant developmental stage (e.g. adult vs young plants), and (iv) evaluation of sequential (i.e. waterlogging − drought) and combined (i.e. waterlogging + salinity) stresses, which often co-occur in pasture lands.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3