Enhancing fatty acid composition of milk and meat through animal feeding

Author:

Doreau M.,Bauchart D.,Chilliard Y.

Abstract

In ruminants, extensive ruminal biohydrogenation of unsaturated fatty acids (FA) results in numerous cis and trans isomers of 18:1 and of conjugated and non-conjugated 18:2, the incorporation of which into ruminant products depends on the composition of the diet (forage vs concentrate) and of dietary lipid supplements. The low amount of 18:3n-3 (α-linolenic acid) absorbed explains its limited incorporation in meat and milk lipids. Its protection against hydrogenation has been an objective for several decades, but only encapsulation in a protein matrix is efficient. In non-ruminants, the FA composition of products is determined by dietary FA, despite minor differences in digestibility and in metabolic activity. Physicochemical differences in intestinal absorption processes between ruminants and non-ruminants can explain the lower FA digestibility in non-ruminants, especially for saturated FA. Unlike in non-ruminants, FA digestibility in ruminants does not depend on FA intake, except for 18:0. The decrease in cow butterfat, especially with concentrate diets, is generally attributed to t10–18:1 or t10,c12–18:2, but the regulation is probably more complex. Differences in terms of butterfat content and FA composition of milk between cow, ewe and goat responses to the amount and composition of ingested lipids are due to between-species variations in mammary metabolism. In animals bred for meat production, dietary 18:3n-3 results in increases in this FA and in n-3 long-chain polyunsaturated FA (20:5n-3, 22:5n-3) in muscles. The extent of this increase depends both on animal and nutritional factors. Grass is a source of 18:3n-3, which contributes to increased 18:3n-3 in muscle of ruminants as well as of pigs. Conjugated linoleic acids are mainly present in fat tissues and milk due to t11–18:1 desaturation. Their concentration depends on tissue type and on animal species. Non-ruminants fed synthetic conjugated linoleic acids incorporate them in significant amounts in muscle, depending on the isomer. All dietary manipulations favouring polyunsaturated FA incorporation in milk and meat lipids increase the risk of lipoperoxidation, which can be efficiently prevented by use of dietary combined hydro- and lipophilic antioxidants in the diet. Putative effects on organoleptic and technological quality of products deserve further studies.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3