Impact of soil conditions on hydrology and water quality for a brown clay in the north-eastern cereal zone of Australia

Author:

Freebairn D. M.,Wockner G. H.,Hamilton N. A.,Rowland P.

Abstract

Hydrology and water quality impacts of alternative land management practices are poorly quantified for semi-arid environments in the northern Australia cropping zone, yet wide-scale changes in tillage practices and land use were being recommended based on experience from other environments. The objective of this study was to explore changes in soil profile and catchment hydrology and water quality associated with different soil surface conditions created by different tillage and grazing practices. Soil water, runoff, and suspended sediment concentrations were monitored on 4 contour bay catchments over an 18-year period. Soil conditions were described by soil moisture, soil cover, and surface roughness in order to explore functional relationships between management, hydrology, and water quality. The site was chosen to represent the drier margins of cropping in southern Queensland where clay soils with high water-holding capacity, in conjunction with fallowing to store water for later crop growth, are an essential risk management tool. Accumulation of soil water in fallows was inefficient, with fallow efficiencies ranging from –7 to 40% due to high evaporation and runoff losses. Runoff amount was determined by soil water content, which was strongly influenced by antecedent rainfall, water use, and evaporation patterns. Surface cover and roughness had subtle influences on runoff, and a greater effect on suspended sediment concentration. Runoff and suspended sediment losses were considerably lower under pasture than cropping. A participative approach between farmers and scientists was demonstrated to be an efficient method to carry out an extensive and long-term catchment study at a remote location. This study provides benchmark data for future hydrologic and water quality investigations.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3