Influencing the future: interactions of skeleton, energy, protein and calcium during late gestation and early lactation

Author:

Lean Ian J.,DeGaris Peter J.,Celi Pietro,McNeill David M.,Rodney Rachael M.,Fraser David R.

Abstract

Marked improvements in milk production, health and reproduction have resulted from manipulations of the pre-calving diet. An understanding of the underlying physiological changes resulting from manipulation of late gestational diets is needed in order to refine and enhance these responses. The physiology of late gestation and early lactation of the dairy cow is examined in the context of exploring the hypothesis that changes in physiology occur not only through homeostatic, but also homeorhetic change. Studies in mice and man have identified a pivotal role for skeleton, particularly through production of active forms of osteocalcin, in integrating energy metabolism. Skeleton appears to particularly influence lipid metabolism and vice versa. Further insights into the factors influencing skeletal function and calcium (Ca) metabolism are emerging, including the potential for negative dietary cation anion difference (DCAD) diets to upregulate the responses of the skeleton in metabolism through increased bone mobilisation and in enhancing responses to parathyroid hormone. The rumen appears to be an important site of absorption of Ca, but physiological mechanisms influencing this uptake are not clear. We provide quantitative evidence of the magnitude of responses that reflect relationships linking Ca metabolism, skeleton and production, using meta-analytic methods. Negative DCAD diets increase milk production in multiparous cattle, but not in heifers. Further, examination of concentrations of metabolites related to energy metabolism obtained from cattle exposed to a negative DCAD diet over calving identified a dominant role for Ca concentrations, which were associated with blood-free fatty acids (NEFA), blood 3-hydroxybutyrate, glucose and cholesterol. These relationships were homeostatic, occurring on the same day, but also homeorhetic with concentrations of Ca and NEFA being significantly associated over 21 days. The findings in cattle are consistent with those in the murine models. However, Ca and the skeleton are not the only significant factors in the transition period influencing future performance as hormonal treatments, metabolic demands and sex of the conceptus, and inflammation and the factors controlling this play a role in future performance. Homeorhetic, longer-term, adaptive responses are critical to achieving orchestrated longer-term adaptive responses to calving and lactation. We consider that the teleological question ‘why would a bone-specific hormone (osteocalcin) regulate energy metabolism?’ is answered by the specific needs for integrated metabolism to address the extreme metabolic demands of lactation in many species.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3