Tumour necrosis factor alpha up-regulates matrix metalloproteinase-2 activity in periovulatory ovine follicles: metamorphic and endocrine implications

Author:

Gottsch Michelle L.,Van Kirk Edward A.,Murdoch William J.

Abstract

The collagenous matrix of the wall of periovulatory follicles is degraded and remodelled during ovulatory ovarian rupture and luteinization. Matrix metalloproteinase-2 (MMP-2) belongs to a family of zinc endopeptidases that cleave extracellular proteins; its primary substrate is the type IV collagen of basement membranes. Tumour necrosis factor α (TNFα) is a putative mediator of collagenolysis and ovulation. The objective of this investigation was to ascertain the regulatory role of TNFa on MMP-2 activity relevant to the folliculo-luteal transition in ewes. Luteal regression and the preovulatory surge of gonadotropins were induced by administration of prostaglandin F 2 α and gonadotropin-releasing hormone (GnRH) on Days 14 and 15.5 (= 0 h) of the oestrous cycle, respectively. Ovulation occurs from the dominant follicle approximately 24 h after GnRH. An immunocapture-activity assay was used to measure MMP-2 in follicular extracts. Bioactive MMP-2 increased from 0 to 20 to 40 h after GnRH. Enzyme was immunolocalized at 40 h to the connective tissue framework that invades the parenchyma of the formative corpus luteum. Activity of MMP-2 was up-regulated by incubation (20 h) of 0-h follicular explants with TNFα; this response was suppressed by the transcriptional inhibitor actinomycin D. Activity of MMP-2 was reduced when preovulatory follicular tissues were incubated (12-h explants for 6 h) with TNFα antiserum. Ovulation was blocked by intrafollicular injection of TNFα antiserum. Unruptured follicles luteinized, but were deficient in collagenous/vascularized trabeculae, and produced less progesterone than their control luteal counterparts. It is suggested that TNFα, via MMP-2 induction, contributes to the reorganization of an ovulatory follicle into a fully competent corpus luteum.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3