Effects of municipal solid waste compost, rice-straw compost and mineral fertilisers on biological and chemical properties of a saline soil and yields in a mustard–pearl millet cropping system

Author:

Meena M. D.,Joshi P. K.,Narjary B.,Sheoran P.,Jat H. S.,Chinchmalatpure A. R.,Yadav R. K.,Sharma D. K.

Abstract

We investigated the effects of organic amendments, municipal solid waste compost (MSWC) and rice-straw compost (RSC) with and without mineral fertilisers on biological and chemical properties of a saline soil. Field experiments were conducted for two consecutive years during 2012–14. In the first year, application of 8tha–1 of MSWC+50% of the recommended dose of fertilisers (RDF) resulted in higher microbial biomass carbon (MBC), enzyme activities, soil organic carbon (SOC), available nitrogen (N), phosphorus (P) and potassium (K) than 7tha–1 of RSC+50% RDF, after mustard (Brassica juncea) and pearl millet (Pennisetum glaucum) harvests. Combined use of 8tha–1 of MSWC+50% RDF resulted in 47% and 54% more MBC than the unfertilised control after mustard and pearl millet harvests, respectively. Dehydrogenase activity was significantly higher with 100% RDF than the control after 2 years of the cropping cycle. Among organic amendments, MSWC was superior to RSC in terms of MBC, and activities of dehydrogenase, alkaline phosphatase and urease. SOC was significantly increased under MSWC+50% RDF compared with 100% RDF alone. Significant build-up of soil fertility in terms of available N, P and K was observed with RSC+50% RDF compared with the control. During the second year of the cropping system, soil treated with RSC+50% RDF had 14%, 17% and 9% higher N, P and K than soil treated with 100% RDF, after pearl millet harvest. The magnitude of change in soil electrical conductivity and pH was low during 2012–13; however, soil salinity decreased by 55% and 48% with MSWC+50% RDF and RSC+50% RDF, respectively, relative to the control at 120 days of pearl millet growth in 2013–14. Application of MSWC +50% RDF produced 2.5 and 2.70tha–1 of mustard and pearl millet, and increased grain yield by 19% and 15%, respectively, compared with 100% RDF. Integrated use organic amendments and mineral fertiliser is recommended for promoting biological and chemical properties of saline soil in a mustard–pearl millet cropping system.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3