Soil fungal community is more sensitive than bacterial community to modified materials application in saline–alkali land of Hetao Plain

Author:

Bai Xiaolong,Zhang En,Wu Jinmin,Ma Donghai,Zhang Chaohui,Zhang Bangyan,Liu Yunpeng,Zhang Zhi,Tian Feng,Zhao Hui,Wang Bin

Abstract

Soil salinization has become a major challenge that severely threatens crop growth and influences the productivity of agriculture. It is urgent to develop effective management measures to improve saline–alkali soil. Thus, in this study, soil properties, microbial communities, and function under desulfurization gypsum (DE), soil amendment (SA), farm manure (FA), and co-application of desulfurization gypsum, soil amendment, and farm manure (TA) in a field experiment were examined by high-throughput sequencing. The results showed that the application of modified materials is an effective approach in improving saline–alkali soil, especially TA treatment significantly increased the content of available phosphorus (AP), available potassium (AK), soil organic matter (SOM), and alkaline hydrolysis nitrogen (AHN) and decreased pH, bulk density (BD), and electrical conductivity (EC). The application of modified materials resulted in notable enhancement in fungal diversity and altered the composition and structure of the fungal community. Conversely, the effect on the bacterial community was comparatively minor, with changes limited to the structure of the community. Regarding the fungal community composition, Ascomycota, Mortierellomycota, and Basidiomycota emerged as the dominant phyla across all treatments. At each taxonomic level, the community composition exhibited significant variations in response to different modified materials, resulting in divergent soil quality. The TA treatment led to a decrease in Mortierellomycota and an increase in Ascomycota, potentially enhancing the ability to decompose organic matter and facilitate soil nutrient cycling. Additionally, the sensitivity of fungal biomarkers to modified materials surpassed that of the bacterial community. The impact of modified materials on soil microbial communities primarily stemmed from alterations in soil EC, AP, AK, and SOM. FUNGuild analysis indicated that the saprotroph trophic mode group was the dominant component, and the application of modified materials notably increased the symbiotroph group. PICRUSt analysis revealed that metabolism was the most prevalent functional module observed at pathway level 1. Overall, the application of modified materials led to a decrease in soil EC and an increase in nutrient levels, resulting in more significant alterations in the soil fungal community, but it did not dramatically change the soil bacterial community. Our study provides new insights into the application of modified materials in increasing soil nutrients and altering soil microbial communities and functions and provides a better approach for improving saline–alkali soil of Hetao Plain.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3