Physical modelling of forest fire spreading through heterogeneous fuel beds

Author:

Simeoni Albert,Salinesi Pierre,Morandini Frédéric

Abstract

Vegetation cover is a heterogeneous medium composed of different kinds of fuels and non-combustible parts. Some properties of real fires arise from this heterogeneity. Creating heterogeneous fuel areas may be useful both in land management and in firefighting by reducing fire intensity and fire rate of spread. The spreading of a fire through a heterogeneous medium was studied with a two-dimensional reaction–diffusion physical model of fire spread. Randomly distributed combustible and non-combustible square elements constituted the heterogeneous fuel. Two main characteristics of the fire were directly computed by the model: the size of the zone influenced by the heat transferred from the fire front and the ignition condition of vegetation. The model was able to provide rate of fire spread, temperature distribution and energy transfers. The influence on the fire properties of the ratio between the amount of combustible elements and the total amount of elements was studied. The results provided the same critical fire behaviour as described in both percolation theory and laboratory experiments but the results were quantitatively different because the neighbourhood computed by the model varied in time and space with the geometry of the fire front. The simulations also qualitatively reproduced fire behaviour for heterogeneous fuel layers as observed in field experiments. This study shows that physical models can be used to study fire spreading through heterogeneous fuels, and some potential applications are proposed about the use of heterogeneity as a complementary tool for fuel management and firefighting.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3