Isolation and purification treatments change the metal-binding properties of humic acids: effect of HF/HCl treatment

Author:

Botero Wander G.,Pineau Michael,Janot Noémie,Domingos Rute F.,Mariano José,Rocha Luciana S.,Groenenberg Jan E.,Benedetti Marc F.,Pinheiro José P.

Abstract

Environmental contextStudying the mechanism of binding between metals and natural organic matter is fundamental to understanding the transport and availability of these contaminants in the environment. The influence of sample treatment on the purification of organic matter showed significant differences in the interaction with metals. The results will contribute to improved modelling of metal binding to organic matter in soils, thereby providing a basis for a more realistic risk assessment. AbstractWe studied the changes in metal binding characteristics of extracted humic acids induced by HF/HCl treatment followed by dialysis, i.e. the last step of the International Humic Substances Society (IHSS) extraction protocol. We performed metal binding experiments with both the alkaline-extracted material (AE) and the fully purified (FP) humic acid using the electrochemical stripping technique (AGNES) and modelled the results using the NICA-Donnan model. The results showed an increase of free Zn, Cd and Pb concentrations of ~1 order of magnitude for the AE compared with the FP. These differences may be mostly explained by the different carbon content (51.3 % FP and 36.5 % AE) associated with an AE/FP carboxyl ratio of 0.5. Simulations using the NICA-Donnan model showed that halving the amount of carboxylic groups (Qmax,1) for the FP reduced this difference to 0.25 log units for Cd and Zn and to 0.15 log unit for Pb. There is a clear need for further research on the differences between purified v. less-disturbed natural organic material, which will contribute to improved modelling of metal binding to organic matter in soils, hence providing a basis for a more realistic risk assessment.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3