Effect of summer irrigation on seasonal changes in taproot reserves and the expression of winter dormancy/activity in four contrasting lucerne cultivars

Author:

Pembleton K. G.,Cunningham S. M.,Volenec J. J.

Abstract

In the summer dry environment of cool temperate Tasmania, summer irrigation is used to maximise forage production. For lucerne (Medicago sativa L.) this irrigation is likely to interact with winter-dormancy genotypes to influence seasonal changes in taproot reserves and thus, the process of cold acclimation. To test this hypothesis four lucerne cultivars with contrasting levels of winter dormancy (DuPuits: winter-dormant; Grasslands Kaituna: semi winter-dormant; SARDI 7: winter-active: SARDI 10, highly winter-active) were grown in small plots at Elliott, Tasmania, under irrigated or dryland conditions. At each defoliation taproots were sampled and assayed for the concentration of soluble sugars, starch, amino acids, soluble protein, the abundance of vegetative storage proteins (VSP), and the abundance of mRNA transcripts associated with cold acclimation and VSP. Taproot-soluble protein concentrations in DuPuits significantly increased from summer to autumn when plants were grown under dryland conditions. When grown under irrigated conditions, taproot-soluble protein concentrations decreased over summer and increased in autumn for all cultivars. The abundance of VSP increased in summer in all cultivars grown under dryland conditions. Taproot-soluble sugar concentrations increased and starch decreased in autumn for all cultivars grown under both water regimes. Plants grown under dryland conditions showed little change in RNA transcript abundance of cold acclimation genes across all cultivars and sampling dates, while in those plants grown under irrigated conditions, transcript abundance was influenced by sampling date, and for some genes, by cultivar. There was a clear carry-over effect from the exposure of summer drought on the winter-dormancy response. The expression of winter dormancy at an agronomic and molecular level was greater under dryland conditions.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3