Stomatal pore size and density in mangrove leaves and artificial leaves: effects on leaf water isotopic enrichment during transpiration

Author:

Sternberg Leonel da Silveira Lobo,Manganiello Lynn M.

Abstract

We tested the hypothesis that the previously observed low isotopic enrichment of mangrove leaf water is caused by larger stomatal pores and lower densities compared with freshwater plants. First, we measured and compared pore size and density in mangroves, transitional and freshwater species in South Florida. We pooled this data with other reports encompassing 14 mangrove species and 134 freshwater species and tested for differences in pore size and density between mangroves and freshwater plants. Second, we built artificial leaves having different pore size and density and determined whether there were isotopic differences in their water after transpiration. Both the local survey and pooled data showed that mangrove leaves have significantly larger stomatal pores with lower densities compared with freshwater plants. Isotope enrichment of water from artificial leaves having larger less dense pores was lower than those having smaller and denser pores. Stomatal pore size and density has an effect on leaf water isotopic enrichment amongst other factors. Pore size and density probably affects key components of the Peclet ratio such as the distance advective flow of water must travel to the evaporative surface and the cross-sectional area of advective flow. These components, in turn, affect leaf water isotopic enrichment. Results from the artificial leaf experiment also mimic a recent finding that effective path length scales to the inverse of transpiration in real leaves. The implications of these findings further our understanding of leaf water isotope ratios and are important in applications of stable isotopes in the study of paleoclimate and atmospheric processes.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3