18O enrichment of sucrose and photosynthetic and nonphotosynthetic leaf water in a C3 grass—atmospheric drivers and physiological relations

Author:

Baca Cabrera Juan C.12ORCID,Hirl Regina T.1,Zhu Jianjun1,Schäufele Rudi1,Ogée Jérôme3,Schnyder Hans1

Affiliation:

1. Technische Universität München, TUM School of Life Sciences Lehrstuhl für Grünlandlehre Freising‐Weihenstephan Germany

2. Forschungszentrum Jülich GmbH Institute of Bio‐ and Geosciences, Agrosphere (IBG-3) Jülich Germany

3. UMR ISPA INRAE France

Abstract

AbstractThe 18O enrichment (Δ18O) of leaf water affects the Δ18O of photosynthetic products such as sucrose, generating an isotopic archive of plant function and past climate. However, uncertainty remains as to whether leaf water compartmentation between photosynthetic and nonphotosynthetic tissue affects the relationship between Δ18O of bulk leaf water (Δ18OLW) and leaf sucrose (Δ18OSucrose). We grew Lolium perenne (a C3 grass) in mesocosm‐scale, replicated experiments with daytime relative humidity (50% or 75%) and CO2 level (200, 400 or 800 μmol mol−1) as factors, and determined Δ18OLW, Δ18OSucrose and morphophysiological leaf parameters, including transpiration (Eleaf), stomatal conductance (gs) and mesophyll conductance to CO2 (gm). The Δ18O of photosynthetic medium water (Δ18OSSW) was estimated from Δ18OSucrose and the equilibrium fractionation between water and carbonyl groups (εbio). Δ18OSSW was well predicted by theoretical estimates of leaf water at the evaporative site (Δ18Oe) with adjustments that correlated with gas exchange parameters (gs or total conductance to CO2). Isotopic mass balance and published work indicated that nonphotosynthetic tissue water was a large fraction (~0.53) of bulk leaf water. Δ18OLW was a poor proxy for Δ18OSucrose, mainly due to opposite Δ18O responses of nonphotosynthetic tissue water (Δ18Onon‐SSW) relative to Δ18OSSW, driven by atmospheric conditions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3