Different responses in leaf pigments and leaf mass per area to altitude between evergreen and deciduous woody species

Author:

Li Yan,Yang Dongmei,Xiang Shuang,Li Guoyong

Abstract

Leaf chlorophyll content is positively associated with photosynthetic capacity and nutrient status, but its functional ecology has seldom been examined thus far. In the present study, we measured leaf chlorophyll and carotenoid concentrations, determined chlorophyll a : chlorophyll b (Chl a : Chl b) and carotenoids : chlorophyll ratios and measured leaf mass per area (LMA) for 63 woody dicot species, including 24 evergreen species and 39 deciduous species, at two altitudes (1800–2400 and 2400–2800 m a.s.l.) of Gongga Mountain, south-west China. The aim of the present study was to determine whether evergreen and deciduous species differ in terms of leaf pigment concentrations and LMA in response to environmental differences associated with changes in elevation. In both life forms, the altitude effect was not significant for chlorophyll and carotenoid concentrations. However, the Chl a : Chl b ratio was significantly higher in evergreen species, whereas LMA was significantly higher in deciduous species, at the high versus low altitude. These observations suggest that evergreen and deciduous species may have different strategies to protect leaf pigments. Mass-based leaf pigment concentrations were lower in evergreen compared with deciduous species, especially at high altitude. LMA was higher in evergreen than deciduous species at both altitudes. Pigment concentrations were negatively correlated with LMA in both life forms at both altitudes. The slope of LMA vs mass-based leaf pigment concentrations was significantly more negative for deciduous than evergreen species, and at low versus high altitude for deciduous species. The findings suggest that deciduous species may invest less photosynthate in leaf pigments but more in inactive components in stressful environments than do evergreens. Thus, the same magnitude of variation in LMA may have different consequences on leaf carbon balance between evergreen and deciduous species, which helps explain why evergreen species are often more likely to occupy more stressful environments than deciduous species.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3