Iron(III)-induced activation of chloride from artificial sea-salt aerosol

Author:

Wittmer Julian,Bleicher Sergej,Ofner Johannes,Zetzsch Cornelius

Abstract

Environmental context Inorganic, natural aerosols (sea-salt, mineral dust, glacial flour) and contributions of anthropogenic components (fly ash, dust from steel production and processing, etc.) contain iron that can be dissolved as FeIII in saline media. This study investigates photochemical processes in clouds and aerosols producing gas-phase Cl as a function of salt- and gas-phase composition employing a simulation chamber. Atomic Cl may contribute to the oxidative capacity of the troposphere, and our findings imply local sources. Abstract Artificial sea-salt aerosol, containing FeIII at various compositions, was investigated in a simulation chamber (made of Teflon) for the influence of pH and of the tropospheric trace gases NO2, O3 and SO2 on the photochemical activation of chloride. Atomic chlorine (Cl) was detected in the gas phase and quantified by the radical clock technique. Dilute brines with known FeIII content were nebulised until the relative humidity reached 70–90%. The resulting droplets (most abundant particle diameter: 0.35–0.46µm, initial surface area: up to 3×10–2cm2cm–3) were irradiated with simulated sunlight, and the consumption of a test mixture of hydrocarbons was evaluated for Cl, Br and OH. The initial rate of atomic Cl production per aerosol surface increased with FeIII and was ~1.9×1018 atoms cm–2s–1atCl–/FeIII=13. The presence of NO2 (~20 ppb) increased it to ~7×1018 atoms cm–2s–1, the presence of O3 (630 ppb) to ~9×1018 atoms cm–2s–1 and the presence of SO2 at 20 and 200 ppb inhibited the release slightly to ~1.7 and ~1.1×1018 atoms cm–2s–1. The observed production of atomic Cl is discussed with respect to pH and speciation of the photolabile aqueous FeIII complexes.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3