Physical and practical constraints on atmospheric methane removal technologies

Author:

Pennacchio LuisaORCID,Mikkelsen Marie KORCID,Krogsbøll MortenORCID,van Herpen Maarten,Johnson Matthew SORCID

Abstract

Abstract Despite their apparent utility in mitigating climate change, technologies for removing methane from air are in early stages of development. Here we evaluate the limiting physical constraints, for three types of systems: two- and three-dimensional infrastructure and atmospheric oxidation enhancement, focusing on removing low ( x CH4 < 1000 ppm) and ambient ( x CH4 < 2 ppm) methane from air. With the space velocities and removal efficiencies of current three-dimensional technologies, volumes of 7–350 km3 are required to remove 1 Tg CH4 yr−1. Two-dimensional solutions are limited by the transport rate of methane to a surface. If every molecule of methane that collides with the surface is removed, an area of 1130 km2 is needed to remove 1 Tg CH4 yr−1 at ambient concentration. However, research shows that per-collision reaction probabilities are < 10−8 requiring a surface area of 1010–1015 km2. Finally, we examine atmospheric oxidation enhancement, where 4.8 Tg yr−1 of Cl or 8.8 Tg yr−1 of OH is required to remove 1 Tg CH4 yr−1, with precursors such as H2O2 or O3. However, limitations arise concerning multiple environmental impacts. We conclude that the physical and practical constraints are considerable, and identify the main barriers that must be addressed.

Funder

Spark Climate Solutions

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3