Nuclear magnetic resonance spectroscopy of denatured proteins

Author:

Bradbury JH,King NLR

Abstract

The proton magnetic resonance spectroscopy of 11 proteins (molecular weight range 5700-650000) has been investigated in five denaturing solvents, viz., trifluoroacetic acid-d, formic acid, dichloroacetic acid, 6M guanidine hydrochloride in D2O, and 8M urea in D2O. The chemical shifts, line-widths, and intensities of the resonances have been measured of the histidine C2 protons, the methionine SCH3 protons and methyl protons of leucine, isoleucine, and valine, the aromatic protons, and the α-CH protons. ��� It is found that, with some exceptions delineated below, the line- widths of the methyl resonances are constant for a particular solvent, independent of the molecular weight of the protein. This indicates that, in general, the proteins behave as random coil structures in these solvents, which confirms the conclusion reached by Tanford and co-workers1-4 for 6M guanidine hydrochloride. ��� However, methyl line broadening occurs in dichloroacetic acid for catalase and fibrinogen, in guanidine hydrochloride for insulin, and in urea for insulin and lysozyme. Furthermore, the C 2 histidine resonance is absent in dichloroacetic acid solutions of thyroglobulin, catalase, and fibrinogen; the SCH3 resonance is absent in myoglobin in trifluoroacetic acid-d and occurs as a doublet for trypsin in guanidine hydrochloride and in urea. A general line broadening of resonances indicates association and/or incomplete unfolding of molecules, whereas perturbations of only one particular resonance, as in the cases detailed above, are probably due to intramolecular non-covalent interactions which involve the perturbed group and another unspecified group in the protein. ��

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3