Inorganic carbon utilization in marine angiosperms (seagrasses)

Author:

Beer Sven,Bjork Mats,Hellblom Frida,Axelsson Lennart

Abstract

The mechanisms by which marine angiosperms, or seagrasses, utilize external inorganic carbon (Ci) include, in addition to uptake of CO2 formed spontaneously from HCO3–: (i) extracellular carbonic anhydrasemediated conversion of HCO3– to CO2 at normal seawater pH, or in acid zones created by H+ extrusion, and (ii) H+-driven utilization (direct uptake?) of HCO3–. The latter mechanism was recently indicated for Zostera marina, Halophila stipulaceaand Ruppia maritima, and manifested itself as a sensitivity of photosynthesis to buffers, as well as a relative insensitivity to acetazolamide under buffer-free conditions, especially at high pH. Seagrasses have until recently been viewed as having Ci utilization systems that are less ‘efficient’ than macroalgae, and this has, for example, led to the thought that future rises in atmospheric and thus dissolved CO2 would have a stronger effect on seagrasses than on macroalgae. However, most of the experiments leading to such conclusions were carried out in the laboratory on detached leaves, and buffers were used to keep HCO3–/CO2 ratios stable during Ci additions. The revelation that seagrass photosynthesis is sensitive to buffers as well as to physical perturbations, has led to new experiments in which initial pH values are set by appropriate HCO3–/CO32–ratios, and/or O2 measurements on leaf pieces are replaced with pulse amplitude-modulated fluorometry on whole, attached leaves, often in situ. Under such conditions, the photosynthetic responses of seagrasses to Ci match those obtained for macroalgae. Thus, the paradigm of ‘inefficient’ Ci utilization by seagrasses as compared with macroalgae may no longer be valid. Consequently, it seems that the generally observed high productivity of seagrass beds may have its background in very efficient, H+-driven, means of HCO3– utilization.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3