Use of handheld mid-infrared spectroscopy and partial least-squares regression for the prediction of the phosphorus buffering index in Australian soils

Author:

Forrester Sean T.,Janik Les J.,Soriano-Disla José M.,Mason Sean,Burkitt Lucy,Moody Phil,Gourley Cameron J. P.,McLaughlin Michael J.

Abstract

The development of techniques for the rapid, inexpensive and accurate determination of the phosphorus (P) buffer index (PBI) in soils is important in terms of increasing the efficiency of P application for optimum crop requirements and preventing environmental pollution due to excessive use of P fertilisers. This paper describes the successful implementation of partial least-squares regression (PLSR) from spectra obtained with bench-top and handheld mid-infrared (MIR) spectrometers for the prediction of PBI on 601 representative Australian agricultural soils. By contrast, poor predictions were obtained for available (Colwell) P. Regression models were successfully derived for PBI ranges of 0–800 and 0–150, the latter range resulting in the optimum model considering the dominance of low PBI soils in the sample set. Concentrations of some major soil minerals (mainly kaolinite and gibbsite content for high PBI, and smectites or illites for low PBI), quartz (representative of low surface area of soils) and, to a lesser extent, carbonate and soil organic matter were identified as the main drivers of the PBI models. Models developed with soils sieved to <2 mm presented an accuracy similar to those developed using fine-ground material. The accuracy of the PLSR for the prediction of PBI by using bench-top and handheld instruments was also similar. Our results confirm the possibility of using MIR spectroscopy for the onsite prediction of PBI.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3