Photosynthesis and the Accumulation of Proline in Response to Water Deficit

Author:

Joyce PA,Aspinall D,Paley LG

Abstract

Light increases proline accumulation in water-stressed excised leaves of barley, and the response is linked to photosynthesis. The manner in which current photosynthesis contributes to proline accumulation and the role of soluble tissue carbohydrates has been examined. Increasing the CO2 content of the air surrounding stressed tissue had no effect on proline accumulation and reducing it to zero reduced proline accumulation only in leaves previously kept in darkness. The direct contribution of assimilated carbon to proline synthesis, assessed with labelled CO2, was small (< 10% of accumulated proline). The potential energy supply from photosynthesis during water stress was more than adequate for proline synthesis, but the potential energy supply from carbohydrate oxidation for segments stressed in darkness became limiting in leaves incubated in darkness for 48 h before stress. Energy provision from current photosynthesis may thus contribute to light stimulation of proline accumulation. Illumination modified the soluble carbohydrate content of the leaf segments and these variations were related to the rates of proline synthesis and oxidation. However, these effects were over-ridden by stress, and the mechanism of the response to light is not fully explained.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3