Testing the primer-plant concept: wheat yields can be increased on alkaline sodic soils when an effective primer phase is used

Author:

Nuttall J. G.,Davies S. L.,Armstrong R. A.,Peoples M. B.

Abstract

The primer-plant concept was tested for wheat (Triticum aestivum) grown on an alkaline sodic soil taken from the southern Mallee of Victoria. This concept relates to use of species of plants with high natural adaptation to hostile subsoils, being able to modify the soil environment and leave biopores for the benefit of subsequent annual crops. For the experiment reported here, wheat was sown into large (0.3 m diam. by 1.0 m length) intact soil cores (collected from a cropping paddock near Birchip in the southern Mallee region of Victoria, Australia) following either birdsfoot trefoil (Lotus corniculatus), canola (Brassica napus), chicory (Cichorium intybus), lucerne (Medicago sativa), safflower (Carthamus tinctorius), sulla (Hedysarum coronarium), or tall wheatgrass (Thinopyrum ponticum). At the conclusion of the priming phase [270 days after sowing (DAS)], all the different crops extracted c. 145 mm of stored water, the exception being canola (120 mm). Lucerne and birdsfoot trefoil produced the least above-ground biomass (26 g/pot), and safflower the most (115 g/pot). Greater early vigour and water extraction (49 mm) occurred for subsequent wheat crops after birdsfoot trefoil than with wheat after all other species (39 mm). This translated to a 15% yield advantage for wheat after birdsfoot trefoil compared with lucerne. Wheat after sulla yielded 12% more due to increased grain number and kernel size compared with wheat after lucerne. It was proposed that the difference in yield related to the root systems of species tested. Birdsfoot trefoil and sulla were characterised by intensive branching, which potentially produced a fine mosaic of residual biopores. Lucerne, in contrast, which was assumed to have similar break-crop effects, had a large taproot with fewer branches leaving fewer, larger residual root channels than either of the other legumes. It is believed that the fine biopores allowed more rapid and thorough exploration of the bulk soil by the crop roots.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3