Abstract
Oocyte maturation is defined as that phase of development whereby a fully grown oocyte reinitiates meiotic maturation, completes one meiotic division with extrusion of a polar body, then arrests at MII until fertilisation. Completion of maturation depends on many different factors, not the least of which is the proper provision of energy substrates to fuel the process. Interaction of the oocyte and somatic compartment of the follicle is critical and involves numerous signals exchanged between the two cell types in both directions. One of the prominent functions of the cumulus cells is the channelling of metabolites and nutrients to the oocyte to help stimulate germinal vesicle breakdown and direct development to MII. This entails the careful integration and coordination of numerous metabolic pathways, as well as oocyte paracrine signals that direct certain aspects of cumulus cell metabolism. These forces collaborate to produce a mature oocyte that, along with accompanying physiological changes called cytoplasmic maturation, which impart subsequent developmental competence to the oocyte, can be fertilised and develop to term. This review focuses on nuclear maturation and the metabolic interplay that regulates it, with special emphasis on data generated in the mouse.
Subject
Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献