Oocyte metabolic function, lipid composition, and developmental potential are altered by diet in older mares

Author:

Catandi Giovana D1ORCID,LiPuma Lance2,Obeidat Yusra M3,Maclellan Lisa J1,Broeckling Corey D4,Chen Tom56,Chicco Adam J2,Carnevale Elaine M12

Affiliation:

1. 1Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA

2. 2Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA

3. 3Electronic Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan

4. 4Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado, USA

5. 5Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado, USA

6. 6School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA

Abstract

Dietary supplementation is the most feasible method to improve oocyte function and developmental potential in vivo. During three experiments, oocytes were collected from maturing, dominant follicles of older mares to determine whether short-term dietary supplements can alter oocyte metabolic function, lipid composition, and developmental potential. Over approximately 8 weeks, control mares were fed hay (CON) or hay and grain products (COB). Treated mares received supplements designed for equine wellness and gastrointestinal health, flaxseed oil, and a proprietary blend of fatty acid and antioxidant support (reproductive support supplement (RSS)) intended to increase antioxidant activity and lipid oxidation. RSS was modified for individual experiments with additional antioxidants or altered concentrations of n-3 to n-6 fatty acids. Oocytes from mares supplemented with RSS when compared to COB had higher basal oxygen consumption, indicative of higher aerobic metabolism, and proportionately more aerobic to anaerobic metabolism. In the second experiment, oocytes collected from the same mares prior to (CON) and after approximately 8 weeks of RSS supplementation had significantly reduced oocyte lipid abundance. In the final experiment, COB was compared to RSS supplementation, including RSS modified to proportionately reduce n-3 fatty acids and increase n-6 fatty acids. The ability of sperm-injected oocytes to develop into blastocysts was higher for RSS, regardless of fatty acid content, than for COB. We demonstrated that short-term diet supplementation can directly affect oocyte function in older mares, resulting in oocytes with increased metabolic activity, reduced lipid content, and increased developmental potential.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3