Quantitatively assessing the effects of climate change and human activities on ecosystem degradation and restoration in southwest China

Author:

Sun Z. G.,Wu J. S.,Liu F.,Shao T. Y.,Liu X. B.,Chen Y. Z.,Long X. H.,Rengel Z.

Abstract

Identifying the effects of climate change and human activities on the degradation and restoration of terrestrial ecosystems is essential for sustainable management of these ecosystems. However, our knowledge of methodology on this topic is limited. To assess the relative contribution of climate change and human activities, actual and potential net primary productivity (NPPa and NPPp respectively), and human appropriation of net primary productivity (HANPP) were calculated and applied to the monitoring of forest, grassland, and cropland ecosystems in Yunnan–Guizhou–Sichuan Provinces, southwest China. We determined annual means of 476 g C m–2 year–1 for NPPa, 1314 g C m–2 year–1 for NPPp, and 849 g C m–2 year–1 for HANPP during the period between 2007 and 2016. Furthermore, the area with an increasing NPPa accounted for 75.12% of the total area of the three ecosystems. Similarly, the areas with increasing NPPp and HANPP accounted for 77.60 and 57.58% of the study area respectively. Furthermore, we found that ~57.58% of areas with ecosystem restored was due to climate change, 23.39% due to human activities, and 19.03% due to the combined effects of human activities and climate change. In contrast, climate change and human activities contributed to 19.47 and 76.36%, respectively, of the areas of degraded ecosystem. Only 4.17% of degraded ecosystem could be attributed to the combined influences of climate change and human activities. We conclude that human activities were mainly responsible for ecosystem degradation, whereas climate change benefitted ecosystem restoration in southwest China in the past decade.

Publisher

CSIRO Publishing

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3