Sustainability of nutrient management in grain production systems of south-west Australia

Author:

Harries MartinORCID,Flower Ken C.,Scanlan Craig A.ORCID

Abstract

Balancing nutrient inputs and exports is essential to maintaining soil fertility in rainfed crop and pasture farming systems. Soil nutrient balances of land used for crop and pasture production in the south-west of Western Australia were assessed through survey data comprising biophysical measurements and farm management records (2010–15) across 184 fields spanning 14 Mha. Key findings were that nitrogen (N) inputs via fertiliser or biological N2 fixation in 60% of fields, and potassium (K) inputs in 90% of fields, were inadequate to balance exports despite increases in fertiliser usage and adjustments to fertiliser inputs based on rotations. Phosphorus (P) and sulfur (S) balances were positive in most fields, with only 5% returning losses >5 kg P or 7 kg S/ha. Within each of the three agroecological zones of the survey, fields that had two legume crops (or pastures) in 5 years (i.e. 40% legumes) maintained a positive N balance. At the mean legume inclusion rate observed of 20% a positive partial N budget was still observed for the Northern Agricultural Region (NAR) of 2.8 kg N/ha.year, whereas balances were negative within the Central Agricultural Region (CAR) by 7.0 kg N/ha.year, and the Southern Agricultural Region (SAR) by 15.5 kg N/ha.year. Hence, N budgets in the CAR and SAR were negative by the amount of N removed in ~0.5 t wheat grain, and continuation of current practices in CAR and SAR fields will lead to declining soil fertility. Maintenance of N in the NAR was achieved by using amounts of fertiliser N similar to other regions while harvesting less grain. The ratio of fertiliser N to legume-fixed N added to the soil in the NAR was twice that of the other regions. Across all regions, the ratio of fertiliser N to legume-fixed N added to the soil averaged ~4.0:1, a major change from earlier estimates in this region of 1:20 under ley farming systems. The low contribution of legume N was due to the decline in legume inclusion rate (now 20%), the low legume content in pastures, particularly in the NAR, and improved harvest index of lupin (Lupinus angustifolius), the most frequently grown grain legume species. Further quantifications of the effects of changing farming systems on nutrient balances are required to assess the balances more accurately, thereby ensuring that soil fertility is maintained, especially because systems have altered towards more intensive cropping with reduced legume production.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3