Development of rapid and sensitive loop-mediated isothermal method for on-site visual identification of tissue origin of pig by using mitochondrial COI gene sequences

Author:

Kumari SaritaORCID,Kumar R. R.ORCID,Mendiratta S. K.,Mahala Anurag,Kumar Arun,Jawla Jyoti

Abstract

Context The loop-mediated isothermal amplification (LAMP) methods have great potential to identify the species origin of the tissue in meat and meat products at isothermal temperature and are also suitable for field conditions. Aim The present study aimed to develop a rapid, specific, and sensitive assay based on the LAMP technique for identification of tissue of pig origin. Methods The pig-specific primers were designed by targeting the mitochondrial COI gene. The amplification temperature and time for the LAMP reaction were optimised as 64°C and 45 min. The analysis of the amplified product was performed on the basis of the development of colour after the addition of intercalating SYBR Green I dye, and also by the ladder-like pattern on agarose-gel electrophoresis. Key results The assay was found to be highly specific for DNA templates of pig origin and showed no cross-reactivity with other food animals, viz. cattle, buffalo, sheep, and goats. The analytical sensitivities of the LAMP and PCR assays were recorded as up to 0.00001 ng and 0.1 ng respectively, of the absolute DNA content. The laboratory validation of the developed method was performed on blind samples and an admixture of meat from different food animals, viz. cattle, buffalo, sheep, goat and pig. The analysis could be performed in an hour by using supernatant from Phire Animal Tissue Direct PCR kit-treated tissue, excluding the complex process of nucleic acid extraction. Conclusion The LAMP assay was found to be cost-effective, easy to perform, and highly species-specific for pig tissue in meat and meat admixture. The result of the assay can be analysed with the naked eye without the need for sophisticated equipment. Compared with pre-standardised PCR assay, the developed LAMP method was quite sensitive and could be performed within 1 h, from sampling to analysis results. Implications The developed LAMP assay is low resource-based single-tube approach that could be exploited significantly in the fields of diagnostics, agriculture, and aquaculture.

Funder

ICAR-Indian Veterinary Research Institute

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3