Review of quantitative sensitivity of faba bean physiology to temperature and soil-water deficit

Author:

Sinclair Thomas R.ORCID,Marrou Helene,Ghanem Michel Edmond,Kharrat Mohamed,Amri Moez

Abstract

Faba bean (Vicia faba L.) is an important component of cropping systems in cool, arid environments. However, no review has specifically focused on the quantitative sensitivity of physiological processes in faba bean to low temperature and water deficits. The objective of this review was to examine published functional relationships between physiological activity and these environmental variables. Among faba bean genotypes, temperature generally resulted in a consistent linear response in plant ontogeny and leaf area development. By contrast, nitrogen fixation exhibited a sharp threshold response to temperature such that at temperatures below ~13.5–15°C faba bean had virtually no nitrogen fixation activity. This inability to fix nitrogen under cool temperatures is likely to be a major weakness for faba bean in cool-season production systems. Water deficit also had a large impact on the physiology of faba bean. Ontogeny was generally shortened when plants were subjected to drought, resulting in major yield decreases. Genotypic differences within faba bean have been identified for initiation of partial stomata closure at high soil-water content, resulting in possible soil-water conservation in the field. Also, differences among genotypes have been identified in the sensitivity of nitrogen fixation activity to water deficits. Finally, collectively the reviewed functional relationships have been applied to simulation analysis of the geospatial impact of irrigation regimes and of sowing date for faba bean production. These geospatial studies offered insights on options to improve faba bean management.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3