Soil–air partitioning of volatile organic compounds into soils with high water content

Author:

Ahn Jeonghyeon,Rao Guiying,Mamun Mustafa,Vejerano Eric P.ORCID

Abstract

Environmental contextAssessing environmental and human health impacts of chemical spills relies on information about how chemicals move across multiple environments. We measured volatile contaminants in the air above soil saturated with water to provide estimates of air concentrations of selected chemicals released to soil from an oil refinery in Texas during Hurricane Harvey. Estimated concentrations were below recommended exposure limits, even in a worst-case scenario. AbstractThe emission of volatile organic compounds (VOCs) from soil into air is affected by soil moisture dynamics, soil temperature, solar irradiance and carbon availability. The high amount of water in soil can modify its properties, which changes how VOCs interact. We conducted a comprehensive measurement of the soil–air partition coefficient (KSA) of VOCs into water-saturated soil with both low and high water contents for polar, weakly polar and nonpolar VOCs into a mineral soil (S-clay) and soil containing a high amount of organic matter (S-om) under a water-saturated condition. Partitioning of non-polar substituted aromatics (1,2-dichlorobenzene and toluene) was sensitive to the organic matter content in water-saturated soil. 1,2-Dichlorobenzene and toluene had higher affinities to S-om than to S-clay at all investigated water contents because of their strong interaction with the organic matter in soil. KSA decreased with elevated water content only for non-polar substituted aromatic VOCs. Less hydrophobic VOCs (benzene and trichloroethylene) exhibited similar partitioning into both soils by sorbing onto the air-water interface and dissolving in soil water, while the organic matter did not affect partitioning. The weakly polar and polar VOCs (methyl tert-butyl ether and 1-butanol) showed similar partitioning into both soils by dissolving in soil water while sorption to the organic matter was significant only at high soil water contents. KSA of VOCs on soil with high organic matter content correlated strongly with psat and Koa, but not on mineral soil. Estimates of the air concentrations for a subset of VOCs released from one refinery during Hurricane Harvey in 2017 in Harris County, Texas were lower than the recommended exposure limits, even under a worst-case scenario.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3