Abstract
The MYB transcription factor (TF) are among the largest gene families of plants being responsible for several biological processes. The R2R3-MYB gene family are integral player regulating plant primary and secondary metabolism, growth and development, and responses to hormones and stresses. The phylogenetic analysis combined with gene structure analysis and motif determination resulted in division of R2R3-MYB gene family into 27 subgroups. Evidence generated from synteny analyses indicated that CqR2R3-MYBs gene family is featured by tandem and segmental duplication events. On the basis of RNA-Seq data, the expression patterns of different tissues under salt treatment were investigated resulting CqR2R3-MYB genes high expression both in roots and stem of quinoa (Chenopodium quinoa) plants. More than half of CqR2R3-MYB genes showed expression under salt stress. Based on this result, CqR2R3-MYBs may regulate quinoa plant growth development and resistance to abiotic stresses. These findings provided comprehensive insights on role of CqR2R3-MYBs gene family members in quinoa and candidate MYB gene family members can be further studies on their role for abiotic stress tolerance in crop plants.
Funder
Key Innovation Team of the 1331 Project of Shanxi Province, the Scientific and Technological Innovation Project of colleges in Shanxi Province
Key Laboratory of Crop Ecology and Dryland Cultivation Physiology of Shanxi Province
National Modern Agricultural Industrial Technology System
Science and technology innovation fund of Shanxi Agricultural University
Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu