Soil water availability influences the temperature response of photosynthesis and respiration in a grass and a woody shrub

Author:

Joseph Tony,Whitehead David,Turnbull Matthew H.

Abstract

Seedlings of the shrub kānuka (Kunzea ericoides var. ericoides (A. Rich) J. Thompson) and the pasture grass brown top (Agrostis capillarus L.) were grown in intact soil cores in climate-controlled cabinets to analyse the thermal response of leaf-level carbon exchange at four levels of volumetric soil water content (θ). The objective was to resolve the combined effects of relatively rapid and short-term changes in θ and temperature on the thermal responses of both photosynthesis and respiration in these two contrasting plant types. Results showed that θ had a greater effect on the short-term temperature response of photosynthesis than the temperature response of respiration. The optimum value of θ for net photosynthesis was around 30% for both plants. The photosynthetic capacity of kānuka and the grass declined significantly when θ fell below 20%. The temperature sensitivity of photosynthesis was low at low soil water content and increased at moderate to high soil water content in both plant types. Statistical analysis showed that the temperature sensitivity of photosynthetic parameters was similar for both plant types, but the sensitivity of respiratory parameters differed. Respiratory capacity increased with increasing soil water content in kānuka but declined significantly when θ fell below 15%. There was no significant influence of soil water content on respiratory capacity in the grass. Collectively, our results indicate that θ influenced the temperature sensitivity of photosynthesis and respiration, and altered the balance between foliar respiration and photosynthetic capacity in both plant types.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3