In vitro silicon supplementation enhanced acclimatisation and growth of sugarcane (Saccharum officinarum) via improved antioxidant and nutrient acquisition patterns in saline soil

Author:

Abbasi Raheel Parvez,Rafiq Khadija,Fatima Sijal,Javed Muhammad Tariq,Azeem Muhammad,Akram Muhammad SohailORCID

Abstract

Salinity affects crop growth by modulating cellular ionic concentrations and generation of reactive oxygen species. Application of silicon (Si) has proved beneficial in ameliorating salinity-triggered plant growth and yield retardations. Leaf roll explants of three sugarcane (Saccharum officinarum) genotypes (HSF-240, CPF-246, CPF-250) were cultured in Murashige and Skoog (MS) medium supplemented with K2SiO3. In vitro regenerated plantlets were acclimatised and grown in natural saline soil. In absence of Si, cv. CPF-246 exhibited better salt tolerance as indicted by maximum chlorophyll a and chlorophyll b contents, rate of photosynthesis and root K+ uptake along with less cellular hydrogen peroxide content. Silicon restricted root Na+ uptake but assisted in K+, Ca2+, Mg2+ and Fe2+ accretion in roots and their translocation towards shoots. Cv. HSF-240 and cv. CPF-250 exhibited more increase in photosynthetic pigment content, stomatal conductance and photosynthetic rate after addition of 25 or 50 mg L−1 Si than control group. Optimum phenolic content and antioxidant enzyme activity along with decreased lipid peroxidation and hydrogen peroxide content were recorded in all three sugarcane genotypes raised in presence of 25 or 50 mg L−1 Si. These findings signify Si supplementation (50 mg L−1) in tissue culture medium and plant adaptation in saline soil. Further in vitro studies involving Si-mediated gene expression modulations in sugarcane protoplasts shall assist in deciphering cross-talk between Si uptake and cellular responses. The application of Si can further be tested for other plant species to devise strategies for improved crop growth and utilisation of saline areas for crop cultivation.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3