Warming alters the positive impact of elevated CO2 concentration on cotton growth and physiology during soil water deficit

Author:

Broughton Katrina J.,Smith Renee A.,Duursma Remko A.,Tan Daniel K. Y.,Payton Paxton,Bange Michael P.,Tissue David T.

Abstract

Alterations in climate factors such as rising CO2 concentration ([CO2]), warming and reduced precipitation may have significant impacts on plant physiology and growth. This research investigated the interactive effects of elevated [CO2], warming and soil water deficit on biomass production, leaf-level physiological responses and whole-plant water use efficiency (WUEP) in cotton (Gossypium hirsutum L.). Cotton was grown in the glasshouse under two [CO2] treatments (CA, 400 µL L–1; CE, 640 µL L–1) and two temperature treatments (TA, 28°C : 17°C day : night; TE, 32°C : 21°C day : night). Plants were subjected to two progressive water deficit cycles, with a 5-day recovery period between the water deficit periods. CE increased vegetative biomass and photosynthetic rates, and decreased stomatal conductance in TA; however, these responses to CE were not evident under TE. CE increased whole-plant water loss under TA, but increased WUEp, whereas increased whole-plant water loss in TE decreased WUEp regardless of atmospheric [CO2]. CE may provide some positive growth and physiological benefits to cotton at TA if sufficient water is available but CE will not mitigate the negative effects of rising temperature on cotton growth and physiology in future environments.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3