Row configuration as a tool for managing rain-fed cotton systems: review and simulation analysis

Author:

Bange M. P.,Carberry P. S.,Marshall J.,Milroy S. P.

Abstract

Rain-fed cotton production can be a significant proportion (average 17%) of the Australian Cotton Industry. One of the management techniques that rain-fed cotton growers have is to modify row configuration. Configurations that have entire rows missing from the sowing configuration are often referred to as ‘skip row’. Skip configurations are used to: increase the amount of soil water available for the crop, which can influence the potential lint yield; reduce the level of variability or risk associated with production; enhance fibre quality; and reduce input costs. Choosing the correct row configuration for a particular environment involves many, often complex, considerations. This paper presents an examination of how rain-fed cotton production in Australia is influenced by row configuration with different management and environmental factors. Data collated from field experiments and the cotton crop simulation model OZCOT, were used to explore the impact of agronomic decisions on potential lint yield and fibre quality and consequent economic benefit. Some key findings were: (i) soil water available at sowing did not increase the advantage of skip row relative to solid configurations; (ii) reduced row spacing (75 cm) did not alter lint yield significantly in skip row crops; (iii) skip row, rain-fed crops show reasonable plasticity in terms of optimum plant spacing within the row (simular to irrigated cotton); (iv) sowing time of rain-fed crops would appear to differ between solid and skip row arrangements; (v) skip row configurations markedly reduce the risk of price discounts due to short fibre or low micronaire and this should be carefully considered in the choice of row configuration; and (vi) skip configurations can also provide some savings in variable costs. In situations where rain-fed cotton sown in solid row configurations is subject to water stress that may affect lint yield or fibre quality, skip row configurations would be a preferential alternative to reduce risk of financial loss.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3