Ecological implications of standard fire-mapping approaches for fire management of the World Heritage Area, Fraser Island, Australia

Author:

Srivastava Sanjeev Kumar,King Lee,Mitchell Chris,Wiegand Aaron,Carter R. W.,Shapcott Alison,Russell-Smith Jeremy

Abstract

The characterisation of spatiotemporal fire patchiness is requisite for informing biodiversity conservation management in many landscape settings. Often, conservation managers are reliant on manually derived fire-history mapping products that delineate fire perimeters. An alternative standard approach concerns the application of remote sensing, typically using band combination indices obtained from relatively fine-scale imagery sensors. For Fraser Island, a World Heritage Area in subtropical, fire-prone eastern Australia, we contrast diagnostic fire-regime characteristics for different vegetation types over a 20-year period (1989–2008) as derived from historical manual, and remotely sensed, fire-mapping approaches. For the remote sensing component we adapt a commonly used approach utilising a differenced normalised burn ratio (dNBR) index derived from Landsat Thematic Mapper imagery. Manual mapping resulted in overestimation of fire-affected area (especially large fires) and fire frequency, whereas the dNBR procedure resulted in underestimation of fire-affected area under low fire-severity conditions, and overestimation of fire patchiness. Of significance for conservation management, (1) age class and related distributions for flammable vegetation types differed markedly between the two mapping approaches, (2) regardless, both methods demonstrated that substantial fuel loads had accumulated in flammable vegetation types by the end of the study period and (3) fuel age was shown to have a more significant effect than did seasonality on the incidence of very large (>1000 ha) fires. The study serves as an introduction to ongoing research concerning the measurement and application of fire patchiness to conservation management in flammable eastern Australian vegetation types.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3