Polyamines effectively mitigate senescence in persistent leaves of

Author:

Altaf FoziyaORCID,Parveen Shazia,Farooq Sumira,ul Haq Aehsan,Lone Mohammad Lateef,Tahir Inayatullah,Kaushik Prashant,El-Serehy Hamed A.

Abstract

Plant leaves provide a unique insight into the changes that occur in organs, tissues and cells as they approach senescence. As part of the parental outlay, plants instigate leaf senescence to reallocate resources from older tissues to new organs towards the termination of the growing season. The aim of crop breeding initiatives is to optimize senescence for specific species. Considering hormonal regulation and their crosstalk during leaf senescence through integration of developmental signals, this work examines the efficacy of polyamines (PAs) in modulating several biochemical and physiological aspects with an ultimate aim to delay leaf senescence in leaf discs of Berginia ciliata (Haw.) sternb. Leaf discs were treated with putrescine (Put), spermidine (Spd) and spermine (Spm) at 20 μM, 20 μM and 15 μM concentration, respectively. A set of leaf discs kept in distilled water served as the control. Leaf discs treated with PAs were green and fresh by about 4 days compared to the control, thus exhibited delayed senescence. This delayed leaf senescence corroborated with the maintenance of high activity of reactive oxygen species (ROS) scavenging antioxidant enzymes viz, superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and higher content of chlorophylls. A marked increase was also observed in membrane stability and soluble proteins in leaf discs treated with PAs. Exogenous PAs reduced oxidative stress in the leaf discs, as revealed by lower malondialdehyde (MDA) level, which is manifested as reduced lipid peroxidation (LPO). Improved membrane stability was proportional to lower LPO, as measured by the membrane stability index (MSI).

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3