The Excited Triplet State Properties of Titanyl Phthalocyanine and its Sulfonated Derivatives

Author:

Zhang Xian-Fu,Huang Jingyao,Xi Qian,Wang Yun

Abstract

Titanyl phthalocyanine (TiOPc) is a well-known, excellent photoconductive material for laser printers and photocopying machines. Its organic derivatives have recently been shown to be excellent photosensitizers for singlet oxygen [O2(1Δg)] production. The excited triplet state properties of TiOPc, in homogeneous DMSO solution, were measured in this study for the first time by nanosecond laser flash photolysis. The data enabled comparisons to be drawn with TiOPcS4 and zinc phthalocyanine (ZnPc), ultimately providing a better understanding of the reported observations. Absorption, fluorescence, and O2(1Δg) sensitization were also studied. TiOPcS4 in DMSO shows remarkably different fluorescence properties from that reported in aqueous solution: both the fluorescence quantum yield (Φf = 0.068) and the fluorescence lifetime (τf = 3.71 ns) were much larger than that reported for aqueous solutions (0.012 and 0.09 ns, respectively). The photosensitizing properties of TiOPcS4 in DMSO are also so significantly better than that in aqueous solution, i.e. triplet lifetime (τT) of 252 μs, triplet quantum yield (ΦT) of 0.42, and the quantum yield of O2(1Δg) (ΦΔ) of 0.49; compare with values of 60 μs, 0.32, 0.13 reported in aqueous solution. TiOPc, however, shows comparable photophysical properties to that of ZnPc, a well-recognized photosensitizer. These results suggest that TiOPc and its derivatives are not only good photoconductors but also good photosensitizers of O2(1Δg), which may find application in photodynamic therapies for treatment of cancer.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3