Hydraulic Resistance of Plants. III. Effects of NaCl in Barley and Lupin

Author:

Munns R,Passioura JB

Abstract

Barley (salt-tolerant) and white lupin (salt-sensitive) were grown in sand in pots designed to fit within a pressure chamber. The sand was irrigated with a nutrient solution to which increasing amounts of NaCl were added daily in increments of 10-25 mol m-3. For a range of transpiration rates (Q), the hydrostatic pressure of the leaf xylem sap of an intact plant was measured by applying sufficient air pressure (p) to the root system to raise the pressure of this sap to zero. The relation between p and Q was linear, i.e. of the form p = po + rQ. Po, the intercept on the p axis, reflects the difference in osmotic pressure across the root, and it is assumed that r, the slope of this relation, gives the hydraulic resistance of the plant. In NaCl-treated barley, r remained constant as the NaCl in the soil solution was increased to 200 mol m-3 over 10 days, and differed little from that of the controls. Po increased by about the same amount as the increase in osmotic pressure of the soil solution. This indicates near-perfect osmotic behaviour by the roots, and consistent with this, osmotic pressure of sap expressed from the cut shoot base generally changed little with increasing NaCl, for a given transpiration rate. In NaCl-treated lupin, by contrast, r increased continually from 25 to 150 mol m-3 NaCI, when it was four times that of the controls. Beyond 75 mol m-3, po increased less than increases in the osmotic pressure of the soil solution, which suggests that salts were then leaking into the root xylem. However, the osmotic pressure of the xylem sap flowing through the petiole did not start to increase until 3 days later when the external solution was over 120 mol m-3, suggesting that substantial amounts of NaCl were being removed from the xylem sap before it reached the petiole.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3