An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cotton

Author:

Maryum Zahra,Luqman Tahira,Nadeem Sahar,Khan Sana Muhy Ud Din,Wang Baohua,Ditta Allah,Khan Muhammad Kashif Riaz

Abstract

Salinity stress is one of the primary threats to agricultural crops resulting in impaired crop growth and development. Although cotton is considered as reasonably salt tolerant, it is sensitive to salt stress at some critical stages like germination, flowering, boll formation, resulting in reduced biomass and fiber production. The mechanism of partial ion exclusion (exclusion of Na+ and/or Cl) in cotton appears to be responsible for the pattern of uptake and accumulation of harmful ions (Na+ and Cl) in tissues of plants exposed to saline conditions. Maintaining high tissue K+/Na+ and Ca2+/Na+ ratios has been proposed as a key selection factor for salt tolerance in cotton. The key adaptation mechanism in cotton under salt stress is excessive sodium exclusion or compartmentation. Among the cultivated species of cotton, Egyptian cotton (Gossypium barbadense L.) exhibit better salt tolerance with good fiber quality traits as compared to most cultivated cotton and it can be used to improve five quality traits and transfer salt tolerance into Upland or American cotton (Gossypium hirsutum L.) by interspecific introgression. Cotton genetic studies on salt tolerance revealed that the majority of growth, yield, and fiber traits are genetically determined, and controlled by quantitative trait loci (QTLs). Molecular markers linked to genes or QTLs affecting key traits have been identified, and they could be utilized as an indirect selection criterion to enhance breeding efficiency through marker-assisted selection (MAS). Transfer of genes for compatible solute, which are an important aspect of ion compartmentation, into salt-sensitive species is, theoretically, a simple strategy to improve tolerance. The expression of particular stress-related genes is involved in plant adaptation to environmental stressors. As a result, enhancing tolerance to salt stress can be achieved by marker assisted selection added with modern gene editing tools can boost the breeding strategies that defend and uphold the structure and function of cellular components. The intent of this review was to recapitulate the advancements in salt screening methods, tolerant germplasm sources and their inheritance, biochemical, morpho-physiological, and molecular characteristics, transgenic approaches, and QTLs for salt tolerance in cotton.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference228 articles.

1. Фізіологічні та молекулярні аспекти сольового стресу рослин;Ісаєнков;Цитология и генетика,2012

2. Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP;Abdalla;Theor. Appl. Genet.,2001

3. Cotton response to salinity and different potassium-sodium ratio in irrigation water;Abd Ella;J. Agron. Crop Sci.,1993

4. Progress and perspective on drought and salt stress tolerance in cotton;Abdelraheem;Ind. Crops Products,2019

5. Genetic analysis and quantitative trait locus mapping of PEG-induced osmotic stress tolerance in cotton;Abdelraheem;Plant Breed.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3