In situ fabrication of AgVO3/BiVO4 graphene aerogels with enhanced photocatalytic activity

Author:

Wang Ying,Chen Maoli,Xie Qin,Wang Bolin,Lin Li,Jiang Yuanyuan,Zhang Li,Zhao Ying,Zhang Yunsong,Zhao MaojunORCID

Abstract

The application of semiconductor photocatalysts with multiple functions is important in the field of photocatalysis technology. As a result, a unique three-dimensional (3D) porous AgVO3/BiVO4/graphene aerogel (AgVO3/BiVO4/GA) was fabricated by using in situ ion exchange and a hydrothermal strategy. The obtained AgVO3/BiVO4/GA shows well-organized heterostructures in which AgVO3 with a rod-like morphology is well dispersed in the 3D graphene aerogel network. Moreover, AgVO3 is used as a precursor for BiVO4 growing on its surface via in situ ion exchange, which effectively avoids the agglomeration of AgVO3 and BiVO4 in the reaction. Benefitting from a reasonable composition and structure, AgVO3/BiVO4/GA possesses a brilliant photodegradation rate towards methyl orange (MO) (93% removal efficiency in 54 min) and tetracycline hydrochloride (TCH) (approximately 92% removal rate within 80 min) and bacteriostatic ability for E. coli (100% antiseptic rate in 30 min), as well as prominent photodegradation activity after five cycles. In addition, E. coli was used as an ecological indicator to evaluate the aquatic toxicity of TCH, and the results confirm that the prepared AgVO3/BiVO4/GA composite can effectively reduce the aquatic toxicity of TCH.

Publisher

CSIRO Publishing

Subject

General Chemistry

Reference61 articles.

1. Harris JP. Degradation of harmful bacteria in simulated wastewater and stormwater runoff by the white rot fungus . Undergraduate Senior Thesis, University of Delaware, Newark DE, USA. 2012. Available at

2. Bacterial decolorization and degradation of azo dyes: A review.;J Taiwan Inst Chem Eng,2011

3. Drugs for bad bugs: Confronting the challenges of antibacterial discovery.;Nat Rev Drug Discov,2007

4. Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes.;Environ Chem Lett,2018

5. Photocatalysis: Into the dark.;Nat Energy,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3