Interaction between two parallel fire fronts under different wind conditions

Author:

Ribeiro CarlosORCID,Reis Luís,Raposo Jorge,Rodrigues André,Viegas Domingos Xavier,Sharples Jason

Abstract

Wildfires often exhibit complex and dynamic behaviour arising from interactions between the fire and surrounding environment that can create a rapid fire advance and result in loss of containment and critical fire safety concerns. A series of laboratory experiments involving the interaction of two parallel fire lines on a uniform fuel bed without slope under the influence of wind is presented and discussed. The two fire lines are initially separated by a certain distance (1, 2 m) and the subsequent fire spread is described. The results show that the pyroconvective interaction between the two fire lines and ambient wind modified the rate of spread of the approaching fire lines and their associated spread characteristics, independently of the distance between them. A physical interpretation of fire evolution based on the dynamic interaction between two parallel fire lines under wind flow is proposed. We use a dimensionless physical parameter, the Froude number. The results also demonstrated the existence of a wind flow velocity between 1 and 2 m s−1, corresponding to a Froude number between 0.2 and 0.4 for which the rate of approach of the two merging fire lines is a minimum.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Reference38 articles.

1. Fire intensity reduction in straw fuel beds treated with a long-term retardant.;Fire Safety Journal,2011

2. Assessing the effect of foliar moisture on the spread rate of crown fires.;International Journal of Wildland Fire,2013

3. Almeida MA de FB de (2005) Caracterização da combustibilidade de leitos florestais heterogéneos. Master's thesis.  Universidade de Aveiro, Aveiro, Portugal. Available at

4. A convective–radiative propagation model for wildland fires.;International Journal of Wildland Fire,2020

5. Human exposure and sensitivity to globally extreme wildfire events.;Nature Ecology and Evolution,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3