Is ground cover a useful indicator of grazing land condition?

Author:

Beutel Terrence S.ORCID,Shepherd Robert,Karfs Robert A.,Abbott Brett N.,Eyre Teresa,Hall Trevor J.,Barbi Emily

Abstract

Remotely sensed ground cover data play an important role in Australian rangelands research development and extension, reflecting broader global trends in the use of remotely sensed data. We tested the relationship between remotely sensed ground cover data and field-based assessments of grazing land condition in the largest quantitative analysis of its type to date. We collated land condition data from 2282 sites evaluated between 2004 and 2018 in the Burdekin and Fitzroy regions of Queensland. Condition was defined using the Grazing Land Management land condition framework that ranks grazing land condition on a four point ordinal scale based on dimensions of vegetation composition, ground cover level and erosion severity. Nine separate ground cover derived indices were then calculated for each site. We found that all indices significantly correlated with grazing land condition on corresponding sites. Highest correlations occurred with indices that benchmarked ground cover at the site against regional ground cover assessed over several years. These findings provide some validation for the general use of ground cover data as an indicator of rangeland health/productivity. We also constructed univariate land condition models with a subset of these indices. Our models predicted land condition significantly better than random assignment though only moderately well; no model correctly predicted land condition class on >40% of sites. While the best models predicted condition correctly at >60% of A and D condition sites, condition at sites in B and C condition sites was poorly predicted. Several factors limit how well ground cover levels predict land condition. The main challenge is modelling a multidimensional value (grazing land condition) with a unidimensional ground cover measurement. We suggest that better land condition models require a range of predictors to address this multidimensionality but cover indices can make a substantial contribution in this context.

Publisher

CSIRO Publishing

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3