Do regenerative grazing management practices improve vegetation and soil health in grazed rangelands? Preliminary insights from a space-for-time study in the Great Barrier Reef catchments, Australia

Author:

Bartley RebeccaORCID,Abbott Brett N.ORCID,Ghahramani AfshinORCID,Ali AramORCID,Kerr Rod,Roth Christian H.,Kinsey-Henderson Anne

Abstract

Regenerative grazing, which generally involves some form of rotational grazing with strategic rest, is increasingly seen as a profitable management approach that will accelerate landscape recovery. However, there is limited quantitative evidence supporting the benefits of this approach in northern Australia. This space-for-time study collected vegetation and soil data from a range of properties in the Burdekin catchment in Queensland that have implemented regenerative grazing strategies for between 5 and 20 years. Data were also collected at adjacent control sites that did not undergo regenerative grazing, but where more traditional continuous set-stocking grazing approaches were applied. Coincident data were also collected from several sites where grazing had been excluded for ~30 years. Data suggested that improvements in vegetation, soil and land condition can be obtained from implementing regenerative grazing principles, although it is likely to take at least 3–5 years, and up to 15–20 years for statistically significant improvements to be measurable at a site, particularly for areas that are moving from a degraded baseline condition. Vegetation attributes such as plant biomass and basal area and litter incorporation all appeared to be better surrogates than percentage ground cover for representing improved landscape condition and soil health. Sites that maintained remotely sensed percentage ground cover at or above the minimally disturbed reference benchmark levels for >10 years, as well as having statistically higher biomass, basal area and litter, had significant increases in total nitrogen (TN) and soil organic carbon (SOC) relative to the local control site. Although there are indications that regenerative grazing can lead to improvements in land condition, this study does not enable us to conclude whether regenerative grazing will accelerate improvements compared with other best-practice grazing land management (GLM) approaches, and further research on the social and economic dimensions of regenerative grazing is needed.

Funder

Great Barrier Reef Foundation

Publisher

CSIRO Publishing

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference120 articles.

1. Soil bulk density and water infiltration as affected by grazing systems.;Journal of Range Management,1987

2. A review of sampling designs for the measurement of soil organic carbon in Australian grazing lands.;The Rangeland Journal,2010

3. What determines soil organic carbon stocks in the grazing lands of north-eastern Australia?;Soil Research,2013

4. Effects of land-use change and management on soil carbon and nitrogen in the Brigalow Belt, Australia: I. Overview and inventory.;The Rangeland Journal,2016

5. Ash A, Corfield J, Ksiksi T (2001) The Ecograze Project: developing guidelines to better manage grazing country. CSIRO Sustainable Ecosystems and QDPI.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3